15 research outputs found

    Laparoscopic or conventional abdominoperineal extirpation in low rectal cancer

    Get PDF
    INTRODUCTION: Laparoscopic abdominoperineal resection (LAPR) as a minimally invasive approach for the treatment of large rectal cancer is widely used. It has been proven to be technically feasible and safe with fewer complications and faster postoperative recovery than the open procedure. Our aim was to evaluate LAPR safety and feasibility as compared to the open procedure in large low rectal cancer.PATIENTS AND METHODS: A total of 34 low rectal cancer patients who underwent open APR (OAPR) were matched with 42 patients who underwent LAPR in a one-to-one fashion between 2011 and 2014 in the Divi­sion of General Surgery, Kaspela University Hospital of Plovdiv.RESULTS: Intraoperative parameters of LAPR were better than those of OAPR as followed: mean operation time (121.8±47.8 min versus 152.1±49.2 min), mean operative blood loss (82±30.0 mL versus 120±35.0 mL), mean total number of retrieved lymph nodes (12±1 versus 12±1.4), and percentage of surgical complications (12.3% versus 15.1%). Laparoscopically treated patients showed significantly shorter postoperative analge­sia (2.1±0.7 days versus 3.7±0.6 days), earlier first flatus (36.3±7.9 hours versus 48.5±9.2 hours), shorter uri­nary drainage (3.8±3.4 days versus 5.8±1.3 days), and shorter hospital stay (6.2±1 days versus 8±2.0 days). Local recurrence rate during a three-year period (in 3 versus 4 patients) and metachronous liver metastasis (in 5 versus 6 patients) were less common after LAPR than after OAPR.CONCLUSION: The risks of APR-specific surgical complications such as perineal wound infection and para­stomal hernia were comparable between the laparoscopic and open surgery groups. There were no signifi­cant differences regarding local recurrence and metachronous liver metastasis between these groups. Com­plication and locoregional recurrence rates in low large rectal cancer patients after laparoscopic and open were quite similar. Scr Sci Med 2017; 49(3): 22-2

    Average luminosity distance in inhomogeneous universes

    Full text link
    The paper studies the correction to the distance modulus induced by inhomogeneities and averaged over all directions from a given observer. The inhomogeneities are modeled as mass-compensated voids in random or regular lattices within Swiss-cheese universes. Void radii below 300 Mpc are considered, which are supported by current redshift surveys and limited by the recently observed imprint such voids leave on CMB. The averaging over all directions, performed by numerical ray tracing, is non-perturbative and includes the supernovas inside the voids. Voids aligning along a certain direction produce a cumulative gravitational lensing correction that increases with their number. Such corrections are destroyed by the averaging over all directions, even in non-randomized simple cubic void lattices. At low redshifts, the average correction is not zero but decays with the peculiar velocities and redshift. Its upper bound is provided by the maximal average correction which assumes no random cancelations between different voids. It is described well by a linear perturbation formula and, for the voids considered, is 20% of the correction corresponding to the maximal peculiar velocity. The average correction calculated in random and simple cubic void lattices is severely damped below the predicted maximal one after a single void diameter. That is traced to cancellations between the corrections from the fronts and backs of different voids. All that implies that voids cannot imitate the effect of dark energy unless they have radii and peculiar velocities much larger than the currently observed. The results obtained allow one to readily predict the redshift above which the direction-averaged fluctuation in the Hubble diagram falls below a required precision and suggest a method to extract the background Hubble constant from low redshift data without the need to correct for peculiar velocities.Comment: 34 pages, 21 figures, matches the version accepted in JCA

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Is diet partly responsible for differences in COVID-19 death rates between and within countries?

    Get PDF
    Correction: Volume: 10 Issue: 1 Article Number: 44 DOI: 10.1186/s13601-020-00351-w Published: OCT 26 2020Reported COVID-19 deaths in Germany are relatively low as compared to many European countries. Among the several explanations proposed, an early and large testing of the population was put forward. Most current debates on COVID-19 focus on the differences among countries, but little attention has been given to regional differences and diet. The low-death rate European countries (e.g. Austria, Baltic States, Czech Republic, Finland, Norway, Poland, Slovakia) have used different quarantine and/or confinement times and methods and none have performed as many early tests as Germany. Among other factors that may be significant are the dietary habits. It seems that some foods largely used in these countries may reduce angiotensin-converting enzyme activity or are anti-oxidants. Among the many possible areas of research, it might be important to understand diet and angiotensin-converting enzyme-2 (ACE2) levels in populations with different COVID-19 death rates since dietary interventions may be of great benefit.Peer reviewe

    Silver quasi-nanoparticles: bridging the gap between clusters molecular-like and plasmonic nanoparticles

    No full text
    International audienceHerein, we report a new strategy for preparing connected silver sub-nanoparticles with unique optical behavior via the selective photo-assisted electrochemical reduction of silver cations in FAU-type zeolite X (FAUX) cages. Bi2+/Bi3+-doped zeolite nanoparticles (ZX-Bi) were prepared by one-pot hydrothermal synthesis and stabilized as a colloidal water suspension. A ZX-Bi suspension, containing silver nitrate, was subjected to UV irradiation resulting in the reduction of silver cations and the generation of Agn&+ (with n > &) clusters (Ag@ZX-Bi). The physicochemical characterization of the samples, using XRD, TG, N2 sorption, NMR, HRTEM-STEM, ICP, EDX and XPS analyses, provided comprehensive information on the textural and structural properties, the chemical compositions and the metal oxidation states of the samples. Their optical behavior was investigated using UV-visible and photoluminescence spectroscopies. The IR-operando analysis under visible-light revealed local heating of Ag@ZX-Bi up to 400 K. Theoretical calculation of the absorption, scattering, and extinction cross-sections, σabs, σsca and σext, respectively, of the different silver models prepared in this study was in agreement with the experimental data, elucidating the unique optical behavior of the silver particles. The set of analyses shows that quasi-nanoparticles of Ag are formed from bridged Ag clusters (AgCLs) through zeolite channels closing the gap between clusters and plasmonic nanoparticles for the first time
    corecore